20,086 research outputs found

    Critical magnetic field in holographic superconductor in Gauss-Bonnet gravity with Born-Infeld electrodynamics

    Full text link
    In the paper using matching method in the probe limit, we investigate some properties of holographic superconductor in Gauss-Bonnet gravity with Born-Infeld electrodynamics . We discuss the effects of the Gauss-Bonnet coupling \a and Born-Infeld parameter bb on the critical temperature and condensate. We find that both of \a and bb make the critical temperature decrease, which implies the condensate harder to form. Moreover we study the magnetic effect on holographic superconductor and obtain that the ratio between the critical magnetic field and the square of the critical temperature increases from zero as the temperature is lowered below the critical value TcT_c, which agrees well with the former results. We also find the critical magnetic field is indeed affected by Gauss-Bonnet coupling, but not by Born-Infeld parameter.Comment: 13 pages, 5 figure

    Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs

    Full text link
    We present two realistic entanglement concentration protocols (ECPs) for pure partially entangled photons. A partially entangled photon pair can be concentrated to a maximally entangled pair with only an ancillary single photon in a certain probability, while the conventional ones require two copies of partially entangled pairs at least. Our first protocol is implemented with linear optics and the second one is implemented with cross-Kerr nonlinearities. Compared with other ECPs, they do not need to know the accurate coefficients of the initial state. With linear optics, it is feasible with current experiment. With cross-Kerr nonlinearities, it does not require the sophisticated single-photon detectors and can be repeated to get a higher success probability. Moreover, the second protocol can get the higher entanglement transformation efficiency and it maybe the most economical one by far. Meanwhile, both of protocols are more suitable for multi-photon system concentration, because they need less operations and classical communications. All these advantages make two protocols be useful in current long-distance quantum communications
    • …
    corecore